Incremental Constrained Discriminant Component Analysis

نویسندگان

  • Amin Allahyar
  • Hadi Sadoghi Yazdi
چکیده

Recently, a constrained Linear Discriminant Analysis (LDA) algorithm is introduced and gained popularity. However, this algorithm is not applicable in the environment with large amount of data points or when the data point arrive in a sequential manner. In this paper, we aim to propose an incremental version of this algorithm called Incremental Constrained Discriminant Component Analysis (ICDCA) to reduce the computational cost of this algorithm in large datasets. The ICDCA updates the within class scatter matrix and between class scatter matrix instead of calculating it from scratch. This change significantly reduces the computational cost of feature extraction process while keep the accuracy of such features as close as possible to offline version of this algorithm. In the end the effectiveness of ICDCA is compared to other recently proposed incremental LDA. To ensure the reliability of these experiments, they are repeated with several UC I data set. In these comparisons, advantage of ICDCA in the accuracy and speed is demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Incremental Subspace Learning Algorithm to Categorize Large Scale Text Data

The dramatic growth in the number and size of on-line information sources has fueled increasing research interest in the incremental subspace learning problem. In this paper, we propose an incremental supervised subspace learning algorithm, called Incremental Inter-class Scatter (IIS) algorithm. Unlike traditional batch learners, IIS learns from a stream of training data, not a set. IIS overcom...

متن کامل

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

Incremental pairwise discriminant analysis based visual tracking

The distinguishment between the object appearance and the background is the useful cues available for visual tracking, in which the discriminant analysis is widely applied. However, due to the diversity of the background observation, there are not adequate negative samples from the background, which usually lead the discriminant method to tracking failure. Thus, a natural solution is to constru...

متن کامل

Gaussian Mixture Models with Component Means Constrained in Pre-selected Subspaces

We investigate a Gaussian mixture model (GMM) with component means constrained in a pre-selected subspace. Applications to classification and clustering are explored. An EM-type estimation algorithm is derived. We prove that the subspace containing the component means of a GMM with a common covariance matrix also contains the modes of the density and the class means. This motivates us to find a...

متن کامل

Incremental Discriminant Analysis in Tensor Space

To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013